어떤 명제가 참이라는 것은 무슨 뜻인가? 이 질문에 대한 답변 중 하나가 정합설이다. 정합설에 따르면, 어떤 명제가 참인 것은 그 명제가 다른 명제와 정합적이기 때문이다. 그러면 '정합적이다'는 무슨 의미인가? 정합적이라는 것은 명제들 간의 특별한 관계인데, 이 특별한 관계가 무엇인지에 대해 전통적으로는 '모순 없음'과 '함축', 그리고 최근에는 '설명적 연관'등으로 정의해 왔다.
먼저 '정합적이다'를 모순 없음으로 정의하는 경우, 추가되는 명제가 이미 참이라고 인정한 명제와 모순이 없으면 정합적이고, 모순이 있으면 정합적이지 않다. 여기서 모순이란 "은주는 민수의 누나이다."와 "은주는 민수의 누나가 아니다."처럼 동시에 참이 될 수도 없고 또 동시에 거짓이 될 수도 없는 명제들 간의 관계를 말한다. '정합적이다'를 모순 없음으로 정의하는 입장에 따르면, "은주는 민수의 누나이다."가 참일 때 추가되는 명제 "은주는 학생이다"는 앞의 명제와 모순이 되지 않기 때문에 정합적이고, 정합적이기 때문에 참이다. 그런데 '정합적이다'를 모순 없음으로 이해하면, 앞의 예에서처럼 전혀 관계가 없는 명제들도 모순이 발생하지 않는다는 이유 하나만으로 모두 정합적이고 참이 될 수 있다는 문제가 생긴다.
이 문제를 해결하기 위해서 '정합적이다'를 함축으로 정의하기도 한다. 함축은 "은주는 민수의 누나이다."가 참일 때 "은주는 여자이다."는 반드시 참이 되는 것과 같은 관계를 이른다. 명제 A가 명제 B를 함축한다는 것은 'A가 참일 때 B가 반드시 참'이라는 의미이다. '정합적이다'를 함축으로 이해하면, 명제 "은주는 민수의 누나이다."가 참일 때 이와 무관한 명제 "은주는 학생이다."는 모순이 없다고 해도 정합적이지 않다. 왜냐하면 "은주는 학생이다."는 "은주는 민수의 누나이다."에 의해 함축되지 않기 때문이다.
그런데 '정합적이다'를 함축으로 정의할 경우에는 참이 될 수 있는 명제가 과도하게 제한된다. 그래서 '정합적이다'를 설명적 연관으로 정의하기도 한다. 명제 "민수는 운동 신경이 좋다."는 "민수는 농구를 잘한다."는 명제를 함축하지는 않지만, 민수가 농구를 잘하는 이유를 그럴듯하게 설명해 준다. 그 역의 관계도 마찬가지이다. 두 경우 각각 설명의 대상이 되는 명제와 설명해 주는 명제 사이에는 서로 설명적 연관이 있다고 말한다. 설명적 연관이 있는 두 명제는 서로 정합적이기 때문에 그중 하나가 참이면 추가되는 다른 하나도 참이다. 설명적 연관으로 '정합적이다'를 정의하게 되면 함축 관계를 이루는 명제들까지도 포괄할 수 있다는 장점이 있다. 함축 관계를 이루는 명제들은 필연적으로 설명적 연관이 있기 때문이다. '정합적이다'를 설명적 연관으로 정의하면, 함축으로 이해하는 것보다는 많은 수의 명제를 참으로 추가할 수 있다.
그러나 설명적 연관이 정확하게 어떤 의미인지, 그리고 그 연관의 긴밀도가 어떻게 측정될 수 있는지는 아직 완전히 해결되지 않은 문제이다. 이 문제와 관련된 최근 연구는 확률 이론을 활용하여 정합설을 발전시키고 있다.
'수능, LEET 독서 > 인문학' 카테고리의 다른 글
버클리의 주관적 관념론 [2014학년도 9월(A)/인문학] (0) | 2021.11.29 |
---|---|
본질주의와 반본질주의 [2014학년도 6월(B)/인문학] (0) | 2021.11.28 |
장자의 물아일체 사상 [2016학년도 6월(B)/인문학] (0) | 2021.11.28 |
맹자의 '의'사상 [2015학년도 9월(A/B)/인문학] (0) | 2021.11.28 |
주희와 정약용의 대학 해석 [2014학년도 9월(A/B)/인문학] (0) | 2021.11.28 |
댓글