위상수학에서 내부, 폐포, 경계, 외부(Interior, closure, boundary, exterior in Topology)
계속해서 '열림'과 '닫힘'이라는 성질을 연구하였으니, 언어적으로 볼 때 이들 개념을 바탕으로 어떤 영역의 경계에 관한 설명을 하는 것임을 예상할 수 있습니다. 열림과 닫힘의 성질을 이용해 주어진 대상의 내부와 경계에 대한 논의를 할 수 있습니다.1. 집합의 내부, 폐포, 경계, 외부 1) 정의 정의($T.P$) 2-18) 내부, 폐포, 경계, 외부의 정의위상공간 $(X,\mathcal{T})$ 와 부분집합 $A\subseteq X$ 를 생각하자.① $A$ 의 '내부(interior)'란 $A$ 에 포함된 모든 열린집합의 합집합으로 정의하며, 기호와 조건제시법으로는 다음과 같이 나타낸다 : $$\begin{align*} \operatorname{int}(A)=A^\circ&:=\displaystyle \..
2024. 4. 20.
위상수학에서 부분기저(Subbasis for a topology)
MathJax.Hub.Config({ tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});위상수학에서 기저에 대한 학습을 하게 되면, 정의를 꼼꼼히 살펴보더라도, 기저로부터 위상이나 위상공간은 얼추 만들 수 있을 것 같기도 하나, 위상공간 $X$ 가 주어졌을 때 그럼 기저는 어떻게 찾으라는 것인지의 설명이 부실합니다. 물론, 기저가 주어졌을 때 그 기저로부터 위상공간 $X$ 나 위상 $\mathcal{T}$ 를 만드는 작업 역시 만만치는 않습니다. 실제로는 이와 같이 기저와 위상, 또는 기저와 위상공간의 관계를 들여다보는 것보다, 이 글에서 다룰 부분기저의 개념을 통해 위상이나 위상공간을 완성하는 편이 조금 더 수월합니다. 보다 정확히 말하자면, ..
2024. 4. 7.