본문 바로가기
미분방정식(Differential equation)/이론적 도구

미분방정식에서 일반해를 선형결합으로 쓰는 이유

by Gosamy 2020. 12. 14.
반응형

미분방정식에서는 해를 나타낼 때 선형결합을 정말 많이 활용합니다. 본격적으로 이를 접하는 단계는 2계 선형 미분방정식에서일 텐데, 실은 편미분 방정식을 가도 일반해는 죄다 선형결합으로 씁니다. 그런데 처음 배울 때 그렇게 쓰는 이유를 정확히 알지 못할 가능성이 있습니다. 바로 선형대수학 때문이죠. 선형결합 및 방정식에 대한 이론을 알아야 이 까닭을 파헤칠 수 있습니다. 그러나 어렵고 낯선 개념을 요구하는 것이 아니니 마음 굳게 먹고 하나하나 이해하려 노력하면 어렵지 않을 것입니다.


1. 일반해를 선형결합으로 쓰는 이유에 대한 가장 많은 하자가 있는 답변 : 대입하면 그것도 성립한다!

 

실제로 이렇게 알고 있는 분들이 많습니다. '선형결합한 식도 대입하면 성립하니까, 그렇게 해를 쓰나보다' 하는 것이죠. 틀린 말은 아니지만 올바른 '설명'은 아닙니다. 그래도, 정말 넣으면 성립하는지 확인은 해봅시다.

 

2계 선형 미분방정식에서 수행할 것입니다. 미분연산자를 써서 인수분해하면

 

$$(D-a)(D-b)y=0\;\;\rightarrow\;\; (D-a)y=0\;\;\mathrm{or}\;\;(D-b)y=0$$

$$\frac{dy}{dx}-ay=0\;\;,\;\;\frac{dy}{dx}-by=0\;\;\Rightarrow\;\;y=C_1e^{ax}
\;\;,\;\;y=C_2e^{bx}$$

 

이렇게 두 개의 해를 각각 구합니다. 하지만 이렇게 해보면 어떨까요? 바로 '치환'을 하는 겁니다. 치환은 항상 복잡한 것을 간단화 할 때, 그 중에서도 반복된 것이 여러개 있어 복잡할 때 간단화 하기 위해서 사용하는 고등수학 뿐만 아니라 대학수학에서 사기적인 스킬입니다. 다음과 같이 $z$를 치환하면 주어진 미분방정식은

 

$$z=(D-a)y\;\;\rightarrow\;\;(D-b)z=0$$

 

으로 바뀝니다. 그러면 분리 가능해졌기 때문에 그대로 $z$값을 구하면 됩니다.

 

$$\frac{dz}{dx}-bx=0\;\;,\;\;\int\frac{dz}{z}=\int bdx \;\;\Rightarrow \;\; \ln z=bx+k$$

 

여기서 $e^k=C$ 로 치환하면 $z=Ce^{bx}$가 되어 

 

$$z=(D-a)y=\frac{dy}{dx}-ay=Ce^{bx}$$

 

이제 치환했던 것을 되돌리면, 1계 선형 미분방정식이 되고 이것의 해는 이미 이전 포스팅에서 완벽히 정리했습니다.

 

$$\begin{align*}
y=y(x)&=e^{-\int -adx}\left ( \int e^{\int -adx}Ce^{bx}dx+C_2 \right )
\\&=C_2e^{ax}+C_1e^{ax}\int e^{(b-a)x}dx
\\&=C_2e^{ax}+\frac{C}{b-a}e^bx=C_2e^{ax}+C_1e^{bx}

\end{align*}$$

 

이 결과는 각각에서 추출한 두 해 뿐만 아니라 이들의 선형결합도 주어진 미분방정식의 해가 됨을 보여주고 있는 것입니다. 선형결합으로 쓴 식을 이 미분방정식의 '일반해(general solution)'이라고 합니다.

 

정리($D.E$) 1.4

2계 선형 동차 미분방정식 $(D-a)(D-b)y=0$ 의 일반해는 $$y=C_2e^{ax}+C_1e^{bx}$$ 이다.

 


2. 내가 구한 두 함수는 전체 해의 기저(basis)이다.

 

그러나 위의 설명은 단순히 대입해도 그것이 해라고 말한 것일 뿐, 충분한 설명을 한 것은 아닙니다. 왜냐하면 그렇다면 또 대입해서 해가 나올 다른 식이 절대 없다는 보장을 하지는 않았기 때문입니다.

 

선형결합으로 해를 쓰는 근본적인 이유는 사실 미분방정식의 해는 무수히 많은데, 무수히 많은 해를 표현하는 탁월한 방법이 선형결합이기 때문이고, 그래서 이를 위해 기저(basis)의 역할을 하는 함수만 구한 뒤 이들의 선형결합을 통해 해공간의 모든 해를 생성(span)하여 압축된 표현을 하는 것입니다. 그러니 안타깝게도, 이에 대한 이해를 완벽히 하려면 선형대수의 지식을 좀 알고 있어야 합니다. 괜히 선대를 안하면 대학 수학의 아무것도 못한다는 말이 있는 것이 아닙니다. 그래도 이 블로그는 쉽게 쉽게 설명을 해주니 끝까지 읽어 내려가 봅시다.

 

선형대수학에서 '기저(basis)'란 $\mathbf{i},\mathbf{j},\mathbf{k} $ 와 같이 어떤 공간에서 벡터 표현을 할 때 기본 재료가 되는 벡터를 말합니다. 예컨대 3차원 공간에서는 위의 $\mathbf{i},\mathbf{j},\mathbf{k}$ 를 들고 있으면, 이 세 벡터 앞에 임의의 숫자를 붙였을 때 $x,y,z$ 방향에 대한 모든 점 표현을 할 수 있기 때문에, 저 세 벡터는 3차원 공간 $R^3$의 모든 점을 다 나타낼 수 있습니다. 이 때 저 기저 3개는 앞에 스칼라 3개를 붙여 선형결합을 했을 때 $R^3$를 생성한다고 합니다. 즉, 기저들로 선형결합을 하면 그 기저의 개수에 해당하는 차원을 가진 공간상의 모든 점들을 모두 나타낼 수 있습니다.

 

그러나 수학에서 기저가 될 수 있는 것은 여러분이 생각하는 (고등학교 때 배웠던) 벡터들만이 아닙니다. 선형대수학에서 벡터의 정의에 의하면 함수 또한 벡터로서의 기능을 합니다. 따라서 함수끼리도 선형독립, 선형종속의 관계가 존재하며 선형결합을 했을 때 특정 공간이 생성될 수 있습니다.

 

문제는 미분방정식의 해가 무수히 많다는 것에서 시작합니다. $(D-a)(D-b)y=0$ 을 풀게 되면 가시적으로는 해가 $y=e^{ax},e^{bx}$ 만 존재하는 것으로 착각할 수 있으나, 실제로는 저 두 함수가 기저의 역할을 하여 선형결합으로 만들어낸 공간이 미분방정식의 해공간입니다. 그러니 2계 선형 동차 미분방정식은 이차방정식처럼 해가 딱 2개만 나오는 것이 아니라, 무수히 많습니다. 그러나 단편적으로 방정식을 풀면 항상 기저 2개만 구하게 됩니다. 그러니 이 기저 2개가 마치 전체 해인 양 착각하게 되고, 2계 미분방정식이니까 해가 2개 나온다고 착각하며, 갑자기 일반해를 이들을 선형결합으로 쓴다고 하니 이를 받아들이는 과정에서 에러가 발생하는 것입니다. 따라서, 2계 선형 동차 미분방정식에서 구한 $e^{ax}, e^{bx}$ 들은 기저함수에 해당하고, 전체 해는 이들의 선형결합으로 만들어 낸 해공간(solution space) 입니다. 그 점들은 무수히 많으니까 일일이 내가 다 쓸 수 없기 때문에 선형결합이라는 무기를 사용한 것입니다.

댓글